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Chapter 3 
Grade-Level 
Considerations 

However 
mathematics 
courses are 
organized, all 
academic standards 
for achievement 
must be the same. 

Preface to Grades Eight 
Through Twelve 

The standards for grades eight through twelve are organized differently 
from those for kindergarten through grade seven. (A complete descrip
tion of this organization is provided on page 78, “Introduction to Grades 

Eight Through Twelve.”) In grades eight through twelve, the mathematics studied 
is organized according to disciplines such as algebra and geometry. Local educa
tional agencies may choose to teach high school mathematics in a traditional sequence 
of courses (Algebra I, geometry, Algebra II, and so forth) or in an integrated fashion in 
which some content from each discipline is taught each year. 

However mathematics courses are organized, the core content of these subjects 
must be covered by the end of the sequences of courses, and all academic stan
dards for achievement must be the same. The core content and the areas of 
emphasis are delineated in the discussions of the individual disciplines presented 
in this section. 

What follows in this preface is a discussion of key standards and discipline-
level emphases for Algebra I, geometry, Algebra II, and probability and statistics. 
These same disciplines will be tested under the statewide Standardized Testing 
and Reporting (STAR) program, which will offer both traditional discipline-
based versions and integrated versions of its test. The following section describes 
standards for the academic content by discipline, along with the areas of emphasis 
in each discipline; it is not an endorsement of a particular choice of structure for 
courses or a particular method of teaching the mathematical content. The addi
tional advanced subjects of mathematics covered in the standards (linear algebra, 
advanced placement probability and statistics, and calculus) are not discussed in 
this section because many of these advanced subjects are not taught in every 
middle school or high school. Schools and districts may combine the subject 
matter of these various disciplines. Many combinations of these subjects are 
possible, and this framework does not prescribe a single instructional approach. 

By the eighth grade, students’ mathematical sensitivity should be sharpened. 
Students should start perceiving logical subtleties and appreciating the need for 
sound mathematical arguments before making conclusions. As students progress 
in the study of mathematics, they learn to understand the meaning of logical 
implication; test general assertions; realize that one counterexample is enough to 
show that a general assertion is false; conceptually understand that the truth of a 
general assertion in a few cases does not allow the conclusion that it is true in all 
cases; distinguish between something being proven and a mere plausibility 
argument; and identify logical errors in chains of reasoning. 
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From kindergarten through grade seven, these standards have impressed on the 
students the importance of logical reasoning in mathematics. Starting with grade 
eight, students should be ready for the basic message that logical reasoning is the 
underpinning of all mathematics. In other words, every assertion can be justified 
by logical deductions from previously known facts. Students should begin to 
learn to prove every statement they make. Every textbook or mathematics lesson 
should try to convey this message and to convey it well. 

Mathematical Proofs 
A misapprehension in mathematics education is that proofs occur only in 

Euclidean geometry and that elsewhere one merely learns to solve problems and do 
computations. Problem solving and symbolic computations are nothing more than 
different manifestations of mathematical proofs. To illustrate this point, the 
following discussion shows how the usual computations leading to the solution 
of a simple linear equation are nothing but the steps of a well-disguised proof 
of a theorem. 

Consider the problem of solving this equation: 

x − 1 (3x − 1) = 2x − 5
4


Multiply both sides by 4 to get:


4x − (3x − 1) = 8x − 20 

Then simplify the left side to get: 

x + 1 = 8x − 20 

Transposing x from left to right yields: 

1 = 7x − 20 

One more transposition, and a division, gives the result x = 3. 

This would seem to be an entirely mechanical procedure that involves no proof 
because both the hypothesis and conclusion are hidden. 

Closer examination reveals that what is really being stated is a mathematical 
theorem: 

A number x satisfies x − 1
4 (3x − 1) = 2x − 5 

when and only when x = 3. 

That x = 3 satisfies the equation is easy to see. The less trivial part of the 
preceding theorem is the assertion that if a number x satisfies x − 1

4 (3x − 1) = 
2x − 5, then x is necessarily equal to 3. A proof of this fact is presented next in a 
two-column format: 

1. x − 1
4 (3x − 1) =  2x − 5 1. Hypothesis 

2. 4(x − 1 (3x − 1)) = 4(2x − 5) 2. a = b implies ca = cb for all

4
 numbers a, b, c. 

3. 4x − 4( 14 (3x − 1)) =  4(2x) − 20 3. Distributive law 
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4. 4x − (4 ⋅ 1
4 )(3x − 1) = (4 ⋅ 2)x − 20 4. Associative law for multiplication 

5. 4x − (3x − 1) = 8x − 20 5. 1 ⋅ a = a for all numbers a. 

6. 4x + (−3x + 1) = 8x − 20 6. −(a − b) = (−a + b) for all numbers 
a, b. 

7. (4x + (−3x)) + 1 = 8x − 20 7. Associative law for addition 

8.	 x + 1 = 8x − 20 8. 4x + (−3x) = (4 + (−3))x, by the

distributive law.


9. −x + (x + 1) = −x + (8x − 20) 9. Equals added to equals are equal. 

10. (−x + x) + 1 = (−x + 8x) − 20 10. Associative law for addition 
0 + 1 = 1. 

11. 1 = 7x − 20 11. −x + 8x = (−1 + 8)x, by the 
distributive law. 

12. 1 + 20 = (7x − 20) + 20 12. Equals added to equals are equal. 

13. 21 = 7x + [(−20) + 20] 13. Associative law for addition 

14. 21 = 7x 14. −a + a =  0 for all a; b + 0 = b 
for all b. 

15. 3 = x 15. Multiply (14) by 1
7 and apply the 

associative law and multiplicative 
inverse to 1 (7x).7 

16. x = 3.	 16. a = b implies that b = a Q.E.D. 

The purpose of giving this proof is by no means to suggest that, in school 
mathematics, linear equations should ever be solved in this tedious fashion. 
Rather, the intention is to show that even certain standard procedures that 
students tend to take for granted are nevertheless mathematical proofs in disguise. 
Furthermore, without the realization that such a mathematical proof is lurking 
behind the well-known formalism of solving linear equations, an author of an 
algebra textbook or a teacher in a classroom would most likely emphasize the 
wrong points in the presentation of beginning algebra. 

The preceding proof clearly exposes the need for generality in the presentation 
of the associative laws and distributive law. In these standards these laws are 
taught starting with grade two, but it is probably difficult to convince students 
that such seemingly obvious statements deserve discussion. For example, if one 
has to believe that 3(5 + 11) = 3 ⋅ 5 + 3 ⋅ 11, all one has to do is to expand both 
sides: clearly, 3 ⋅ 16 = 15 + 33 because both sides are equal to 48. However, one 
look at the deduction of step 3 from step 2 in the preceding mathematical 
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demonstration would make it clear that the hands-on approach to the distributive 
law is useless in this situation. Begin with the right-hand side of the equation: 

4(2x − 5) = 4(2x) − 4 ⋅ 5. 

Here x is an arbitrary number, so we are not saying that 

4(2 ⋅ 17 − 5) = 4(2 ⋅ 17) − 4 ⋅ 5 

or that 

4(2 ⋅ 172 − 5) =  4(2 ⋅ 172) − 4 ⋅ 5. 

Were that the case, the equality could again have been verified by expanding both 
expressions. Rather, the assertion is that, although we do not know what number x 
is, nevertheless it is true that 4(2x − 5) = 4(2x) − 4 ⋅ 5. There is no alternative 
except to justify this general statement by using a general rule: the distributive 
law. The same comment applies to the other applications of the associative laws 
and the distributive law in the preceding proof. 

It must be recognized that some proofs may not be accessible until the later 
grades, such as the reason for the formula of the circumference of a circle, 
C = 2πr. Nevertheless, every technique taught in mathematics is nothing but 
proofs in disguise. The validity of this statement can be revealed by considering 
a special case, such as this word problem for grade eight: 

Jan had a bag of marbles. She gave one-half to James and then one-third 
of the marbles still in the bag to Pat. She then had 6 marbles left. How 
many marbles were in the bag to start with? (TIMSS, gr. 7–8, N-16) 

The solution to the problem follows: 

Suppose Jan had n marbles to start with. If she gave one-half to James, then 
she had n 

2  marbles left. According to the problem, she then gave one-third 
of what was left to Pat (i.e., she gave ( 13 ) ⋅ ( 

1
2 )n to Pat). Thus she gave 

( 6
1 )n marbles to Pat, and what she had left was ( 2

1 )n − ( 6
1 )n = ( 3

1 )n. But the 
problem states that Jan had “6 marbles left.” So ( 1 )n = 6, and n = 18. 

3 
Therefore, Jan had 18 marbles to begin with. 

The next step is to analyze in what sense the preceding solution masks a proof. 
First, the usual solution as presented previously can be broken into two distinct 
steps: 

1. Setting up the equation: If n is the number of marbles Jan had to begin with, 
then the given data imply:


(n − ( 12 )n) − ( 1
3 

)(n − ( 12 )n) = 6.


2. Solving the equation: This step requires the proof of the following theorem: 

n satisfies the equation ( 1 )n − ( 1 )( 1 )n = 6 when and only when n = 18.2 3 2 

Step 1 and step 2 exemplify the two components of mathematics in grades 
eight through twelve: teaching the skills needed to transcribe sometimes untidy 
raw data into mathematical terms and teaching the skills needed to draw precise 
logical conclusions from clearly stated hypotheses. Neither can be slighted. 
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Misconceptions in Mathematics Problems 
It should be pointed out, however, that the built-in uncertainty and indetermi

nacy of step 1—which can lead to the setting up of several distinct equations and 
hence several distinct solutions—has led to the view of mathematics as an impre
cise discipline in which a problem may have more than one correct answer. This 
lack of understanding of the sharp distinction between step 1 and step 2 has had the 
deleterious effect of downgrading the importance of obtaining a single correct 
answer and jettisoning the inherent precision of mathematics. As a result the rigor 
and precision needed for step 2 have been vigorously questioned. Such a 
misconception of mathematics would never have materialized had the process 
of transcription been better understood. This level of rigor and precision is 
embedded in the standards and is essential so that all students can develop 
mathematically to the level required in the Mathematics Content Standards. 

The following is an extreme example of the kind of misconception discussed 
earlier: 

The 20 percent of California families with the lowest annual earnings 
pay an average of 14.1 percent in state and local taxes, and the middle 
20 percent pay only 8.8 percent. What does that difference mean? 
Do you think it is fair? What additional questions do you have? 

Any attempt to solve this problem would require a missing definition in 
mathematical terms of how to decide what is “fair,” and consideration of much 
unspecified information about taxes and society. Since it is impossible to tran
scribe the problem as stated into mathematics, step 1 (setting up the equation) 
cannot be carried out, and so there can be no step 2 (solving the equation). This 
example is therefore not a mathematical problem. Hence, the fact that it has 
no single correct answer can in no way lend credence to the assertion that 
mathematics is uncertain or imprecise. 

The preceding discussion explains that mathematical proofs are the underpin
ning of all of mathematics. Beginning with grade eight, students must deepen 
their understanding of the essential foundations for reasoning provided by 
mathematical proofs. It would be counterproductive to force every student to 
write a two-column proof at every turn, and it would be equally foolish to require 
all mathematics instructional materials to be as pedantic about giving such details 
as the two-column proof shown earlier in this preface. Nevertheless, the message 
that proofs underlie everything being taught should be clear in the instructional 
material and mathematical lessons taught in grades eight through twelve. In 
particular, all instructional materials—not just those for geometry, but especially 
those for algebra and trigonometry—should carefully present proofs of math
ematical assertions when the situation calls for them. For example, an algebra 
textbook which asserts that a polynomial p(x) satisfying p(a) = 0 for some number 
a must contain x − a as a factor, but which does not offer a detailed proof beyond 
a few concrete examples for corroboration, is not presenting material compatible 
with the standards. 
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Algebra I 

In algebra, students learn to reason symbolically, and the complexity and 
types of equations and problems that they are able to solve increase dramati
cally as a consequence. The key content for the first course, Algebra I, 

involves understanding, writing, solving, and graphing linear and quadratic 
equations, including systems of two linear equations in two unknowns. Quadratic 
equations may be solved by factoring, completing the square, or applying the 
quadratic formula. Students should also become comfortable with operations on 
monomial and polynomial expressions. They learn to solve problems employing 
all of these techniques, and they extend their mathematical reasoning in many 
important ways, including justifying steps in an algebraic procedure and checking 
algebraic arguments for validity. 

Transition from Arithmetic to Algebra 
Perhaps the fundamental difficulty for many students making the transition 

from arithmetic to algebra is their failure to recognize that the symbol x stands for 
a number. For example, the equation 3(2x − 5) + 4(x − 2) = 12 simply means 
that a certain number x has the property that when the arithmetic operations 
3(2x − 5) + 4(x − 2) are performed on it as indicated, the result is 12. The 
problem is to find that number (solution). Teachers can emphasize this point by 
having students perform a series of arithmetic computations (using pen and 
paper) starting with x = 1, x = 2, x = 3, x = 4, and so forth, thereby getting 
−13, −3, 7, 17, and so forth. These computations show that none of 1, 2, 3, 4 
can be that solution. Going from x = 3 to x = 4, the value of the expression 
changes from 7 to 17; therefore, it is natural to guess that the solution would be 
between 3 and 4. More experimentation eventually gives 3.5 as the solution. 

Working backwards, since 3(2(3.5) − 5) + 4((3.5) − 2) = 12, one can apply the 
distributive law and commutative and associative laws to unwind the expression, 
intentionally not multiplying out 2(3.5), 4(3.5), and so forth, to get: 

12 + 3 5 ( )  + 2 4 .( )  
3 5  =. 

3 2  + 4( )  

But this is exactly the principle of solving the equation 3(2x −  5) + 4(x − 2) = 
12 for the number x: 

12 + 3 5 ( )  + 2 4 ( )  
x = . 

3 2( )  + 4
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One can bring closure to such a lesson by stressing the similarity between the 
handling of the algebraic equation and the earlier simple arithmetic operations. 

Basic Skills for Algebra I 
The first basic skills that must be learned in Algebra I are those that relate to 

understanding linear equations and solving systems of linear equations. In Algebra 
I the students are expected to solve only two linear equations in two unknowns, 
but this is a basic skill. The following six standards explain what is required: 

4.0 

5.0 

6.0 

Students simplify expressions before solving linear equations and 
inequalities in one variable, such as 3(2x − 5) + 4(x − 2) = 12. 

Students solve multistep problems, including word problems, 
involving linear equations and linear inequalities in one variable 
and provide justification for each step. 

Students graph a linear equation and compute the x- and y-
intercepts (e.g., graph 2x + 6y = 4). They are also able to sketch 
the region defined by linear inequalities (e.g., they sketch the 
region defined by 2x + 6y < 4). 

7.0 

9.0 

Students verify that a point lies on a line, given an equation of 
the line. Students are able to derive linear equations by using 
the point-slope formula. 

Students solve a system of two linear equations in two variables 
algebraically and are able to interpret the answer graphically. 
Students are able to solve a system of two linear inequalities in 
two variables and to sketch the solution sets. 

15.0 Students apply algebraic techniques to solve rate problems, 
work problems, and percent mixture problems. 

Each of these standards can be a source of difficulty for students, but they all 
reflect basic skills that must be understood so that students can advance to the 
next level in their understanding of mathematics. Moreover, modern applications 
of mathematics rely on solving systems of linear equations more than on any other 
single technique that students will learn in kindergarten through grade twelve 
mathematics. Consequently, it is essential that they learn these skills well. 

Point-Slope Formula 
Perhaps the most perplexing difficulty that students have is with Standard 7.0. 

It often seems very hard for them to understand this point. But it is one of the 
most critical skills in this section. In particular, the following idea must be clearly 
understood before the students can progress further: A point lies on a line given 
by, for example, the equation y = 7x + 3 if and only if the coordinates of that point 
(a, b) satisfy the equation when x is replaced with a and y with b. One way of 
explaining this idea is to emphasize that the graph of the equation y = 7x + 3 is 
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precisely the set of points (a, b) for which replacing x by a and y by b gives a true 
statement. (For example, (3, 2) is not on the graph because replacing x with 3 and 
y with 2 gives the statement 2 = 23, which is not true.) Thus, the graph consists 
of all points of the form (a, 7a +  3). It also follows from these considerations 
that the root r of the linear polynomial 7x + 3 is the x-intercept of the graph 
of y = 7x + 3 because (r, 0) is on the graph. 

An additional comment about Standard 7.0 is that, although it singles out the 
point-slope formula, it is understood that students also have to know how to 
write the equation of a line when two of its points are given. However, the fact 
that the slope of a line is the same regardless of which pair of points on the line 
are used for its definition depends on the considerations of similar triangles. 
(This fact is first mentioned in Algebra and Functions Standard 3.3 for grade 
seven.) This small gap in the logical development should be made clear to 
students, with the added assurance that they will learn the concept in geometry. 
The same comment applies also to the fact that two nonvertical lines are 
perpendicular if and only if the product of their slopes is −1 (Standard 8.0). 

Quadratic Equations 
The next basic topic is the development of an understanding of the structure 

of quadratic equations. Here, one repeats the considerations involved in linear 
equations, such as graphing and understanding what it means for a point (x, y) to 
be on the graph. In particular, the graphical interpretation of finding the zeros of 
a quadratic equation by identifying the x-intercepts with the graph is very impor
tant and, as was the case with linear equations, is also a source of serious diffi
culty. Equally important is the recognition that if a, b are the roots of a quadratic 
polynomial, then up to a multiplicative constant, it is equal to (x − a)(x − b). 

When the discriminant of a quadratic polynomial is negative, the quadratic 
formula yields no information at this point because students have not yet been 
introduced to complex numbers. This deficiency will be remedied in Algebra II. 
The following standards show which skills students in a first-year algebra course 
need for solving quadratic equations. Among these, Standards 14.0 and 19.0 on 
the use of completing the square to prove the quadratic formula are basic. 

14.0 

19.0 

20.0 

21.0 

23.0 

Students solve a quadratic equation by factoring or completing 
the square. 

Students know the quadratic formula and are familiar with its 
proof by completing the square. 

Students use the quadratic formula to find the roots of a 
second-degree polynomial and to solve quadratic equations. 

Students graph quadratic functions and know that their roots 
are the x-intercepts. 

Students apply quadratic equations to physical problems, such 
as the motion of an object under the force of gravity. 
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Additional Comments 
Students should be carefully guided through the solving of word problems 

by using symbolic notations. Many students may be so overwhelmed by the 
symbolic notation that they start to manipulate symbols carelessly, and word 
problems become incomprehensible. Teachers and publishers need to be sensitive 
to this difficulty. In addition to Standard 15.0, cited previously, the other relevant 
standards for solving word problems using symbolic notations are: 

10.0 

13.0 

Students add, subtract, multiply and divide monomials and 
polynomials. Students solve multistep problems, including 
word problems, by using these techniques. 

Students add, subtract, multiply, and divide rational expressions 
and functions. Students solve both computationally and 
conceptually challenging problems by using these techniques. 

Among the word problems of this level, those involving direct and inverse 
proportions occupy a prominent place. These concepts, which are often mired 
in the language of “proportional thinking,” need clarification. A quantity P is said 
to be proportional to another quantity Q if the quotient 

Q
P  is a fixed constant k. 

This k is then called the constant of proportionality. Students should be made 
aware that this is a mathematical definition, and there is no need to look for 
linguistic subtleties concerning the phrase “to be proportional to.” Similarly, P is 
said to be inversely proportional to Q if the product PQ is equal to a fixed nonzero 
constant h. 

In Standard 13.0 the emphasis should be on formal rational expressions in a 
number x instead of on rational functions. Many of these formal techniques will 
become increasingly important in Algebra II and trigonometry. The rules of 
exponents, for example, are fundamental to an understanding of the exponential 
and logarithmic functions. Many students fail to cope with the latter topics 
because their understanding of the rules of (fractional) exponents is weak. The 
skills in the following standards need to be emphasized in a first-year algebra 
course: 

2.0	 Students understand and use such operations as taking the 
opposite, finding the reciprocal, taking a root, and raising 
to a fractional power. They understand and use the rules of 
exponents. 

12.0	 Students simplify fractions with polynomials in the numerator 
and denominator by factoring both and reducing them to the 
lowest terms. 

The gist of Standards 16.0 through 18.0 is to introduce students to a precise 
concept of functions in the language of ordered pairs. Introducing this concept 
needs to be done gently because students at this stage of their mathematical 
development may not be ready for this level of abstraction. However, during a 
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first-year algebra course is the stage at which students should see and use the 
functional notation f(x) for the first time. 

In Standard 24.0 students begin to learn simple logical arguments in algebra. 
They can be taught the proof that square roots of prime numbers are never 
rational, thereby solidifying to a certain extent their understanding of rational 
and irrational numbers (grade seven, Number Sense Standard 1.4). In Standard 
3.0 students are taught to solve equations and inequalities involving absolute 
values, but it is not necessary to introduce the interval notation [a, b], (a, b), 
[a, b), and so forth at this point. However, they should be introduced to the set 
notation {a, b, c, . . .} and {x:x satisfies property P } and to the empty set φ in, 
for example, Standard 17.0. Finally, students should become familiar with the 
terminology “solution set” of Standard 9.0—meaning the set of all solutions. 
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Geometry 

The main purpose of the geometry curriculum is to develop geometric 
skills and concepts and the ability to construct formal logical arguments 
and proofs in a geometric setting. Although the curriculum is weighted 

heavily in favor of plane (synthetic) Euclidean geometry, there is room for placing 
special emphasis on coordinated geometry and its transformations. 

The first standards introduce students to the basic nature of logical reasoning in 
mathematics: 

1.0 

3.0 

Students demonstrate understanding by identifying and giving 
examples of undefined terms, axioms, theorems, and inductive 
and deductive reasoning. 

Students construct and judge the validity of a logical argument 
and give counterexamples to disprove a statement. 

Starting with undefined terms and axioms, students learn to establish the 
validity of other assertions through logical deductions; that is, they learn to prove 
theorems. This is their first encounter with an axiomatic system, and experience 
shows that they do not easily adjust to the demand of total precision needed for 
the task. In general, it is important to impress on students from the beginning that 
the main point of a proof is the mathematical correctness of the argument, not the 
literary polish of the writing or the adherence to a particular proof format. 

Inductive Reasoning 
Standard 1.0 also calls for an understanding of inductive reasoning. Students 

are expected to recognize that inductive reasoning by itself does not prove any
thing in mathematics, but that it fosters the kind of intuition that is indispensable 
for finding proofs. To this end students should be encouraged to draw many 
pictures to develop a geometric sense and to amass a wealth of geometric data in 
the process. Many students—including high-achieving ones—complete a course 
in geometry with so little geometric intuition that, given three noncollinear 
points, they cannot even begin to visualize what the circumcircle of these points 
must be like. One way to develop this geometric sense is to have the students 
become familiar with the basic straightedge-compass constructions, as illustrated 
in the following standard: 

16.0 Students perform basic constructions with a straightedge and 
compass, such as angle bisectors, perpendicular bisectors, and 
the line parallel to a given line through a point off the line. 
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It would be desirable to introduce students to these constructions early in the 
course and leave the proofs of their validity to the appropriate place of the logical 
development later. 

Geometric Proofs 
The subject then turns to geometric proofs in earnest. The foundational results 

of plane geometry are embodied in the following standards: 

2.0 

4.0 

7.0 

12.0 

21.0 

Students write geometric proofs, including proofs by 
contradiction. 

Students prove basic theorems involving congruence and 
similarity. 

Students prove and use theorems involving the properties of 
parallel lines cut by a transversal, the properties of quadrilater
als, and the properties of circles. 

Students find and use measures of sides and of interior and 
exterior angles of triangles and polygons to classify figures 
and solve problems. 

Students prove and solve problems regarding relationships 
among chords, secants, tangents, inscribed angles, and 
inscribed and circumscribed polygons of circles. 

It has become customary in high school geometry textbooks to start with 
axioms that incorporate real numbers. Although doing geometric proofs with real 
numbers runs counter to the spirit of Euclid, this approach is a good mathemati
cal compromise in the context of school mathematics. However, the parallel 
postulate occupies a special place in geometry and should be clearly stated in the 
traditional form: Through a point not on a given line L, there is exactly one line 
parallel to L. Because this postulate played a fundamental role in the development 
of mathematics up to the nineteenth century, the significance of the postulate 
should be discussed. And because there always exists at least one parallel line 
through a point to a given line, the import of this postulate lies in the uniqueness 
of the parallel line. A discussion of this postulate provides a natural context to 
show students the key concept of uniqueness in mathematics—a concept that 
experience indicates students usually find difficult. 

One should soft-pedal the early theorems that are the immediate deductions 
from the axioms, regardless of which axiomatic system is used. These deceptively 
simple theorems are in fact conceptually difficult and pedagogically deadly. It is 
better to proceed to the proofs of more advanced, and therefore more substantive, 
theorems. (See Appendix C, “Resource for Secondary School Teachers: Circum
center, Orthocenter, and Centroid.”) It is also recommended that the topics of 
circles and similarity be taught as early as possible. Once those topics have been 
presented, the course enters a new phase not only because of the interesting 
theorems that can now be proved but also because the concept of similarity 
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expands the applications of algebra to geometry. These applications might include 
determining one side of a regular decagon on the unit circle through the use of the 
quadratic formula as well as the applications of geometry to practical problems. 

It is often not realized that theorems for circles can be introduced very early in a 
geometry course. For instance, the remarkable theorem that inscribed angles on a 
circle which intercept equal arcs must be equal can in fact be presented within 
three weeks after the introduction of axioms. All it takes is to prove the following 
two theorems: 

1. Base angles of isosceles triangles are equal. 
2. The exterior angle of a triangle equals the sum of opposite interior angles. 

At this point it is necessary to deal with one of the controversies in mathematics 
education concerning the format of proofs. It has been argued that the traditional 
two-column format is stultifying for students and that the format for proofs in the 
mathematics literature is always paragraph proofs. While the latter observation is 
true, teachers should be aware that a large part of the reason for using paragraph 
proofs is the expense of typesetting more elaborate formats, not that paragraph 
proofs are intrinsically better or clearer. In fact, neither of these claims of superi
ority for paragraph proofs is actually valid. Furthermore, it appears that for 
beginners to learn the precision of argument needed, the two-column format is 
best. After the students have shown a mastery of the basic logical skills, it would 
be appropriate to relax the requirements on form. But the teacher should never relax 
the requirement that all arguments presented by the students be precise and correct. 

Pythagorean Theorem 
One of the high points of elementary mathematics, in fact of all of mathemat

ics, is the Pythagorean theorem: 

14.0 Students prove the Pythagorean theorem. 

This theorem can be proved initially by using similar triangles formed by the 
altitude on the hypotenuse of a right triangle. Once the concept of area is intro
duced (Standard 8.0), students can prove the Pythagorean theorem in at least two 
more ways by using the familiar picture of four congruent right triangles with legs 
a and b nestled inside a square of side a + b. 

8.0 

10.0 

Students know, derive, and solve problems involving the perim
eter, circumference, area, volume, lateral area, and surface area 
of common geometric figures. 

Students compute areas of polygons, including rectangles, 
scalene triangles, equilateral triangles, rhombi, parallelograms, 
and trapezoids. 

For rectilinear figures in the plane, the concept of area is simple because every
thing reduces to a union of triangles. However, the course must deal with circles, 
and here limits must be used and the number π defined. The concept of limit can 
be employed intuitively without proofs. If the area or length of a circle is defined 
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as the limit of approximating, inscribing, or circumscribing regular polygons, 
then π is either the area of a disk of unit radius or the ratio of circumference to 
diameter, and heuristic arguments (see the glossary) for the equivalence of these 
two definitions would be given. 

The concept of volume, in contrast with that of area, is not simple even for 
polyhedra and should be touched on only lightly and intuitively. However, the 
formulas for volumes and surface areas of prisms, pyramids, cylinders, cones, and 
spheres (Standard 9.0) should be memorized. 

An important aspect of teaching three-dimensional geometry is to cultivate 
students’ spatial intuition. Most students find spatial visualization difficult, which 
is all the more reason to make the teaching of this topic a high priority. 

The basic mensuration formulas for area and volume are among the main 
applications of geometry. However, the Pythagorean theorem and the concept of 
similarity give rise to even more applications through the introduction of trigono
metric functions. The basic trigonometric functions in the following standards 
should be presented in a geometry course: 

18.0 Students know the definitions of the basic trigonometric func
tions defined by the angles of a right triangle. They also know 
and are able to use elementary relationships between them. 
For example, tan(x) = sin(x)/cos(x), (sin(x))2 + (cos(x))2 = 1. 

19.0 Students use trigonometric functions to solve for an unknown 
length of a side of a right triangle, given an angle and a length 
of a side. 

Finally, the Pythagorean theorem leads naturally to the introduction of rectan
gular coordinates and coordinate geometry in general. A significant portion of the 
curriculum can be devoted to the teaching of topics embodied in the next two 
standards: 

17.0 

22.0 

Students prove theorems by using coordinate geometry, 
including the midpoint of a line segment, the distance formula, 
and various forms of equations of lines and circles. 

Students know the effect of rigid motions on figures in the 
coordinate plane and space, including rotations, translations, 
and reflections. 

The Connection Between Algebra and Geometry 
These standards lead students to the next level of sophistication: an algebraic 

and transformation-oriented approach to geometry. Students begin to see how 
algebraic concepts add a new dimension to the understanding of geometry and, 
conversely, how geometry gives substance to algebra. Thus straight lines are no 
longer merely simple geometric objects; they are also the graphs of linear equa
tions. Conversely, solving simultaneous linear equations now becomes finding 
the point of intersection of straight lines. Another example is the interpretation 
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of the geometric concept of congruence in the Euclidean plane as a correspon
dence under an isometry of the coordinate plane. Concrete examples of 
isometries are studied: rotations, reflections, and translations. It is strongly 
suggested that the discussion be rounded off with at least the precise statement 
of the structure theorem: Every isometry of the coordinate plane is a translation 
or the composition of a translation and a rotation or the composition of a 
translation, a rotation, and a reflection. 

Special attention should be given to the fact that a gap in Algebra I must be filled 
here. Standards 7.0 and 8.0 of Algebra I assert that: 

1. The graph of a linear equation is a straight line. 
2. Two straight lines are perpendicular if and only if their slopes have a product 

of −1.


These facts should now be proved.


Additional Comments and Cautionary Notes 
This section provides further comments and cautions in presenting the mate

rial in geometry courses. 
Introduction to proofs. An important point to make to students concerning 

proofs is that while the written proofs presented in class should serve as models 
for exposition, they should in no way be a model of how proofs are discovered. The 
perfection of the finished product can easily mislead students into thinking that 
they must likewise arrive at their proofs with the same apparent ease. Teachers 
need to make clear to their students that the actual thought process is usually full 
of false starts and that there are many zigzags between promising leads and dead 
ends. Only trial and error can lead to a correct proof. 

This awareness of the nature of solving mathematical problems might lead to a 
deemphasis of the rigid requirements on the writing of two-column proofs in 
some classrooms. 

Students’ perceptions of proofs. The first part of the course sets the tone for 
students’ perceptions of proofs. With this in mind, it is advisable to discuss, 
mostly without proofs, those first consequences of the axioms that are needed for 
later work. A few proofs should be given for illustrative purposes; for example, the 
equality of vertical angles or the equality of the base angles of an isosceles triangle 
and its converse. There are two reasons for the recommendation to begin with 
only a few proofs. The foremost is that a complete logical development is neither 
possible nor desirable. This has to do with the intrinsic complexity of the struc
ture of Euclidean geometry (see Greenberg 1993, 1–146). A second reason is the 
usual misconception that such elementary proofs are easy for beginners. Working 
on the level of axioms is actually more difficult for beginners than working with 
the theorems that come a little later in the logical development. This difficulty 
occurs because, on the one hand, working with axioms requires a heavy reliance 
on formal logic without recourse to intuition—in fact often in spite of one’s 
intuition. On the other hand, working on the level of axioms does not usually 
have a clear direction or goal, and it is difficult to convince students to learn 
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something without a clearly stated goal. If one so desires, students can always be 
made to go back to prove the elementary theorems after they have already devel
oped a firm grasp of proof techniques. 

Structured work with proofs. Students’ first attempts at proofs need to be 
structured with care. At the beginning of the development of this skill, instead of 
asking students to do many trivial proofs after showing them the proofs of two or 
three easy theorems, it might be a good strategy to proceed as follows: 

1. As early as possible, the students might be shown a generous number of proofs 
of substantive theorems so that they can gain an understanding of what a proof 
is before they write any proofs themselves. 

2. As a prelude to constructing proofs themselves, the students might provide 
reasons for some of the steps in the sample (substantive) proofs instead of 
constructing extremely easy proofs on their own. 

3. After an extended exposure to nontrivial proofs, students might be asked to 
give proofs of simple corollaries of substantive theorems. 

The reason for steps 2 and 3 is to make students, from the beginning, associate 
proofs with real mathematics rather than perform a formal ritual. This goal can 
be accomplished with the use of local axiomatics; that is, if the proof of a theorem 
makes use of facts not previously proved, let these facts be stated clearly before the 
proof. These facts need not be previously proven but should ideally be sufficiently 
plausible even without a proof. Extensive use of local axiomatics would make 
possible, sufficiently early in the course, the presentation of interesting but 
perhaps advanced theorems. In Appendix C the ideas in steps 2 and 3 are put to use 
to demonstrate how they might work. 

Development of geometric intuition. The following geometric constructions are 
recommended to develop students’ geometric intuition. (In this context construc
tion means “construction with straightedge and compass.”) It is understood that 
all of them will be proved at some time during the course of study. The construc
tions that students should be able to do are: 

•	 Bisecting an angle 
•	 Constructing the perpendicular bisector of a line segment 
•	 Constructing the perpendicular to a line from a point on the line and from 

a point not on the line 
•	 Duplicating a given angle 
•	 Constructing the parallel to a line through a point not on the line 
•	 Constructing the circumcircle of a triangle 
•	 Dividing a line segment into n equal parts 
•	 Constructing the tangent to a circle from a point on the circle 
•	 Constructing the tangents to a circle from a point not on the circle 
•	 Locating the center of a given circle 
•	 Constructing a regular n-gon on a given circle for n = 3, 4, 5, 6 

Use of technology. This is the place to add a word about the use of technology. 
The availability of good computer software makes the accurate drawing of 
geometric figures far easier. Such software can enhance the experience of making 

Chapter 3 
Grade-Level 

Considerations 

Grades Eight 
Through 

Twelve 

Geometry 

Students’ first 
attempts at 

proofs need to 
be structured 

with care. 



190 

Chapter 3 
Grade-Level 
Considerations 

Grades Eight 
Through 
Twelve 

Geometry 

One should not 
lose sight of the 
fact that the 
excellent visual 
evidence thus 
provided by 
computers must 
never be taken as 
a replacement for 
understanding. 

the drawings in the constructions described previously. In addition, the ease 
of making accurate drawings encourages the formulation and exploration of 
geometric conjectures. For example, it is now easy to convince oneself that the 
intersections of adjacent angle trisectors of the angles of a triangle are most likely 
the vertices of an equilateral triangle (Morley’s theorem). If students do have 
access to such software, the potential for a more intense mathematical encounter 
is certainly there. In encouraging students to use the technology, however, one 
should not lose sight of the fact that the excellent visual evidence thus provided 
must never be taken as a replacement for understanding. For example, software 
may give the following heuristic evidence for why the sum of the angles of a 
triangle is 180°. When any three points on the screen are clicked, a triangle with 
these three points as vertices appears. When each angle is clicked again, three 
numbers will appear that give the angle measurement of each angle. When these 
numbers are added, 180° will be the answer. Furthermore, no matter the shape 
of the triangle, the result will always be the same. 

While such exercises may boost one’s belief in the validity of the theorem 
about the sum of the angles, it must be recognized that these angle measurements 
have added nothing to one’s understanding of why this theorem is true. Further
more, if one really wants to have a hands-on experience with angle measurements 
in order to check the validity of this theorem, the best way is to do it painstak
ingly by hand on paper. Morley’s theorem, mentioned earlier, is another 
illustration of the same principle: evidence cannot replace proofs. The computer 
program would not reveal the reason the three points are always the vertices 
of an equilateral triangle. 

Introduction to the coordinate plane. Students should know that the coordi
nate plane provides a concrete example that satisfies all the axioms of Euclidean 
geometry if the lines are defined as the graphs of linear equations ax + by = c, 
with at least one of a and b not equal to zero. Lines a1 x + b1 y = c1 and 
a2 x + b2 y = c2 are defined as parallel if (a

1
, b

1
) is proportional to (a2, b2), but 

(a1, b1, c1) is not proportional to (a2, b2, c2). The verification of the axioms is 
straightforward. 
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Algebra II 

Algebra II expands on the mathematical content of Algebra I and geom
etry. There is no single unifying theme. Instead, many new concepts and 
techniques are introduced that will be basic to more advanced courses in 

mathematics and the sciences and useful in the workplace. In general terms the 
emphasis is on abstract thinking skills, the function concept, and the algebraic 
solution of problems in various content areas. 

Absolute Value and Inequalities 
The study of absolute value and inequalities is extended to include simulta

neous linear systems; it paves the way for linear programming—the maximization 
or minimization of linear functions over regions defined by linear inequalities. 
The relevant standards are: 

1.0 

2.0 

Students solve equations and inequalities involving absolute 
value. 

Students solve systems of linear equations and inequalities 
(in two or three variables) by substitution, with graphs, or 
with matrices. 

The concept of Gaussian elimination should be introduced for 2 × 2 matrices 
and simple 3 × 3 ones. The emphasis is on concreteness rather than on generality. 
Concrete applications of simultaneous linear equations and linear programming 
to problems in daily life should be brought out, but there is no need to emphasize 
linear programming at this stage. While it would be inadvisable to advocate the 
use of graphing calculators all the time, such calculators are helpful for graphing 
regions in connection with linear programming once the students are past the 
initial stage of learning. 

Complex Numbers 
At this point of students’ mathematical development, knowledge of complex 

numbers is indispensable: 

5.0 

6.0 

Students demonstrate knowledge of how real and complex 
numbers are related both arithmetically and graphically. In 
particular, they can plot complex numbers as points in the plane. 

Students add, subtract, multiply, and divide complex numbers. 

Chapter 3 
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From the beginning it is important to stress the geometric aspect of complex 
numbers; for example, the addition of two complex numbers can be shown in 
terms of a parallelogram. And the key difference between real and complex 
numbers should be pointed out: The complex numbers cannot be linearly 
ordered in the same way as real numbers are (the real line). 

Polynomials and Rational Expressions 
The next general technique is the formal algebra of polynomials and rational 

expressions: 

3.0 

4.0 

7.0 

Students are adept at operations on polynomials, including long 
division. 

Students factor polynomials representing the difference of 
squares, perfect square trinomials, and the sum and difference 
of two cubes. 

Students add, subtract, multiply, divide, reduce, and evaluate 
rational expressions with monomial and polynomial denomina
tors and simplify complicated rational expressions, including 
those with negative exponents in the denominator. 

The importance of formal algebra is sometimes misunderstood. The argument 
against it is that it has insufficient real-world relevance and it leads easily to an 
overemphasis on mechanical drills. There seems also to be an argument for 
placing the study of exponential function ahead of polynomials in school math
ematics because exponential functions appear in many real-world situations 
(compound interest, for example). There is a need to affirm the primacy of 
polynomials in high school mathematics and the importance of formal algebra. 
The potential for abuse in Standard 3.0 is all too obvious, but such abuse would 
be realized only if the important ideas implicit in it are not brought out. These 
ideas all center on the abstraction and hence on the generality of the formal 
algebraic operations on polynomials. Thus the division algorithm (long division) 
leads to the understanding of the roots and factorization of polynomials. The 
factor theorem, which states that (x−a) divides a polynomial p(x) if and only if 
p(a) = 0, should be proved; and students should know the proof. The rational 
root theorem could be proved too, but only if there is enough time to explain it 
carefully; otherwise, many students would be misled into thinking that all the 
roots of a polynomial with integer coefficients are determined by the divisibility 
properties of the first and last coefficients. 

It would be natural to first prove the division algorithm and the factor theorem 
for polynomials with real coefficients. But it would be vitally important to revisit 
both and to point out that the same proofs work, verbatim, for polynomials with 
complex coefficients. This procedure not only provides a good exercise on complex 
numbers but also nicely illustrates the built-in generality of formal algebra. 

Two remarks about Standard 7.0 are relevant: (1) a rational expression should 
be treated formally, and its function-theoretic aspects (the domain of definition, 
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for example) need not be emphasized at this juncture; and (2) fractional expo
nents of polynomials and rational expressions should be carefully discussed here. 

Quadratic Functions 
The first high point of the course is the study of quadratic (polynomial) 

functions: 

8.0	 Students solve and graph quadratic equations by factoring, 
completing the square, or using the quadratic formula. Students 
apply these techniques in solving word problems. They also 
solve quadratic equations in the complex number system. 

9.0	 Students demonstrate and explain the effect that changing a 
coefficient has on the graph of quadratic functions; that is, 
students can determine how the graph of a parabola changes 
as a, b, and c vary in the equation y = a(x−b)2 + c. 

10.0	 Students graph quadratic functions and determine the maxima, 
mimima, and zeros of the function. 

What distinguishes Standard 8.0 from the same topic in Algebra I is the 
newly acquired generality of the quadratic formula: It now solves all equations 
ax2 + bx + c = 0 with real a, b, and c regardless of whether or not b2 − 4ac < 0, 
and it does so even when a, b, and c are complex numbers. Again it should be 
stressed that the purely formal derivation of the quadratic formula makes it valid 
for any object a, b, and c as long as the usual arithmetic operations on numbers 
can be applied to them. In particular, it makes no difference whether the numbers 
are real or complex. This premise illustrates the built-in generality of formal 
algebra. Students need to know every aspect of the proof of the quadratic for
mula. They should also be made aware (1) that with the availability of complex 
numbers, any quadratic polynomial ax2 + bx + c = 0 with real or complex 
a, b, and c can be factored into a product of two linear polynomials with complex 
coefficients; (2) that c is the product of the roots and −b is their sum; and 
(3) that if a, b, and c are real and the roots are complex, then the roots are a 
conjugate pair. 

Standard 9.0 brings the study of quadratic polynomials to a new level by 
regarding them as a function. This new point of view leads to the exact location 
of the maximum, minimum, and zeros of this function by use of the quadratic 
formula (or, more precisely, by completing the square) without recourse to 
calculus. The practical applications of these results are as important as the theory. 

Another application of completing the square is given in Standard 17.0, 
through which students learn, among other things, how to bring a quadratic 
polynomial in x and y without an xy term to standard form and recognize 
whether it represents an ellipse or a hyperbola. 
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Logarithms 
A second high point of Algebra II is the introduction of two of the basic 

functions in all of mathematics: ex and log x. 

11.0	 Students prove simple laws of logarithms. 

11.1	 Students understand the inverse relationship between 
exponents and logarithms and use this relationship to 
solve problems involving logarithms and exponents. 

11.2	 Students judge the validity of an argument according 
to whether the properties of real numbers, exponents, 
and logarithms have been applied correctly at each step. 

12.0	 Students know the laws of fractional exponents, understand

exponential functions, and use these functions in problems

involving exponential growth and decay.


15.0	 Students determine whether a specific algebraic statement

involving rational expressions, radical expressions, or

logarithmic or exponential functions is sometimes true,

always true, or never true.


The theory should be done carefully, and students are responsible for the 
proofs of the laws of exponents for am where m is a rational number and of the 
basic properties of log

a
x : log

a
 (x

1 
x

2
) = log

a
x

1 
+ log

a
x

2
, log

a
 ( 1 

x ) = −log
a

x, and 
log

a 
x r = r log

a
x, where r is a rational number (Standard 15.0). The functional 

relationships log
a
 (ax) = x and alog(t) = t, where a is the base of the log function in 

the second equation, should be taught without a detailed discussion of inverse 
functions in general, as students are probably not ready for it yet. Practical 
applications of this topic to growth and decay problems are legion. 

Arithmetic and Geometric Series 
A third high point of Algebra II is the study of arithmetic and geometric series: 

23.0	 Students derive the summation formulas for arithmetic series 
and for both finite and infinite geometric series. 

The geometric series, finite and infinite, is of great importance in mathematics 
and the sciences, physical and social. Students should be able to recognize this 
series under all its guises and compute its sum with ease. In particular, they should 
know by heart the basic identity that underlies the theory of geometric series: 

xn − yn = (x − y)(xn–1+ xn–2 y + ⋅ ⋅ ⋅ + xyn–2 + yn–1). 

This identity gives another example of the utility of formal algebra, and the 
identity is used in many other places as well (the differentiation of monomials, 
for example). It should be mentioned that while it is tempting to discuss the 
arithmetic and geometric series using the sigma notation 

n 

∑ , 
i =1 
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it would be advisable to resist this temptation so that the students are not 
overburdened. 

Binomial Theorem 
Students should learn the binomial theorem and how to use it: 

20.0 

18.0 

19.0 

Students know the binomial theorem and use it to expand 
binomial expressions that are raised to positive integer powers. 

Students use fundamental counting principles to compute 
combinations and permutations. 

Students use combinations and permutations to compute 
probabilities. 

In this context the applications almost come automatically with the theory. 
Finally, Standards 16.0 (geometry of conic sections), 24.0 (composition of 

functions and inverse functions), and 25.0 may be taken up if time permits. 
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Trigonometry 

Trigonometry uses the techniques that students have previously learned 
from the study of algebra and geometry. The trigonometric functions 
studied are defined geometrically rather than in terms of algebraic 

equations, but one of the goals of this course is to acquaint students with a more 
algebraic viewpoint toward these functions. 

Students should have a clear understanding that the definition of the trigono
metric functions is made possible by the notion of similarity between triangles. 

A basic difficulty confronting students is one of superabundance: There are six 
trigonometric functions and seemingly an infinite number of identities relating to 
them. The situation is actually very simple, however. Sine and cosine are by far 
the most important of the six functions. Students must be thoroughly familiar 
with their basic properties, including their graphs and the fact that they give the 
coordinates of every point on the unit circle (Standard 2.0). Moreover, three 
identities stand out above all others: sin2 x +  cos2 x = 1 and the addition formulas 
of sine and cosine: 

3.0 Students know the identity cos2(x) + sin2(x) = 1: 

3.1. Students prove that this identity is equivalent to the 
Pythagorean theorem (i.e., students can prove this identity 
by using the Pythagorean theorem and, conversely, they 
can prove the Pythagorean theorem as a consequence 
of this identity). 

3.2. Students prove other trigonometric identities and simplify 
others by using the identity cos2(x) + sin2(x) = 1. 
For example, students use this identity to prove that 
sec2(x) = tan2(x) + 1. 

10.0	 Students demonstrate an understanding of the addition 
formulas for sines and cosines and their proofs and can use 
those formulas to prove and/or simplify other trigonometric 
identities. 

Students should know the proofs of these addition formulas. An acceptable 
approach is to use the fact that the distance between two points on the unit circle 
depends only on the angle between them. Thus, suppose that angles a and b 
satisfy 0 < a < b, and let A and B be points on the unit circle making angles 
a and b with the positive x-axis. Then A = (cos a, sin a), B = (cos b, sin b), 
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and the distance d(A, B) from A to B satisfies the equation: 

d(A, B)2 = (cos b − cos a)2 + (sin b − sin a)2. 

On the other hand, the angle from A to B is (b − a), so that the distance from 
the point C = (cos(b − a), sin(b − a)) to (1, 0) is also d(A, B) because the angle 
from C to (1, 0) is (b − a) as well. Thus: 

d(A, B)2 = (cos(b − a) − 1)2 + sin2(b − a). 

Equating the two gives the formula: 

cos(b − a) = cos a cos b + sin a sin b. 

From this formula both the sine and cosine addition formulas follow easily. 
Students should also know the special cases of these addition formulas in the 

form of half-angle and double-angle formulas of sine and cosine (Standard 11.0). 
These are important in advanced courses, such as calculus. Moreover, the addi
tion formulas make possible the rewriting of trigonometric sums of the form 
A sin(x) + B cos(x) as C sin(x + D) for suitably chosen constants C and D, thereby 
showing that such a sum is basically a displaced sine function. This fact should be 
made known to students because it is important in the study of wave motions in 
physics and engineering. 

Students should have a moderate amount of practice in deriving trigonometric 
identities, but identity proving is no longer a central topic. 

Of the remaining four trigonometric functions, students should make a special 
effort to get to know tangent, its domain of definition ( − π 

2 , π 
2 ), and its graph 

(Standard 5.0). The tangent function naturally arises because of the standard: 

7.0	 Students know that the tangent of the angle that a line makes 
with the x-axis is equal to the slope of the line. 

Because trigonometric functions arose historically from computational needs 
in astronomy, their practical applications should be stressed (Standard 19.0). 
Among the most important are: 

Students know the law of sines and the law of cosines 
and apply those laws to solve problems. 

Students determine the area of a triangle, given one angle 
and the two adjacent sides. 

13.0 

14.0 

These formulas have innumerable practical consequences. 
Complex numbers can be expressed in polar forms with the help of trigono

metric functions (Standard 17.0). The geometric interpretations of the multipli
cation and division of complex numbers in terms of the angle and modulus 
should be emphasized, especially for complex numbers on the unit circle. 
Mention should be made of the connection between the nth roots of 1 and the 
vertices of a regular n-gon inscribed in the unit circle: 

18.0	 Students know DeMoivre’s theorem and can give nth roots 
of a complex number given in polar form. 
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Mathematical Analysis 

This discipline combines many of the trigonometric, geometric, and 
algebraic techniques needed to prepare students for the study of calculus 
and other advanced courses. It also brings a measure of closure to some 

topics first brought up in earlier courses, such as Algebra II. The functional 
viewpoint is emphasized in this course. 

Mathematical Induction 
The eight standards are fairly self-explanatory. However, some comments on 

four of them may be of value. The first is mathematical induction: 

3.0	 Students can give proofs of various formulas by using the

technique of mathematical induction.


This basic technique was barely hinted at in Algebra II; but at this level, to 
understand why the technique works, students should be able to use the tech
nique fluently and to learn enough about the natural numbers. They should also 
see examples of why the step to get the induction started and the induction step 
itself are both necessary. Among the applications of the technique, students 
should be able to prove by induction the binomial theorem and the formulas for 
the sum of squares and cubes of the first n integers. 

Roots of Polynomials 
Roots of polynomials were not studied in depth in Algebra II, and the key 

theorem about them was not mentioned: 

4.0	 Students know the statement of, and can apply, the fundamental 
theorem of algebra. 

This theorem should not be proved here because the most natural proof 
requires mathematical techniques well beyond this level. However, there are 
“elementary” proofs that can be made accessible to some of the students. In a 
sense this theorem justifies the introduction of complex numbers. An application 
that should be mentioned and proved on the basis of the fundamental theorem of 
algebra is that for polynomials with real coefficients, complex roots come in 
conjugate pairs. Consequently, all polynomials with real coefficients can be 
written as the product of real quadratic polynomials. The quadratic formula 
should be reviewed from the standpoint of this theorem. 
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Conic Sections 
The third area is conic sections (see Standard 5.0). Students learn not only the 

geometry of conic sections in detail (e.g., major and minor axes, asymptotes, and 
foci) but also the equivalence of the algebraic and geometric definitions (the latter 
refers to the definitions of the ellipse and hyperbola in terms of distances to the 
foci and the definition of the parabola in terms of distances to the focus and 
directrix). A knowledge of conic sections is important not only in mathematics 
but also in classical physics. 

Limits 
Finally, students are introduced to limits: 

8.0	 Students are familiar with the notion of the limit of a sequence 
and the limit of a function as the independent variable 
approaches a number or infinity. They determine whether 
certain sequences converge or diverge. 

This standard is an introduction to calculus. The discussion should be intuitive 
and buttressed by much numerical data. The calculator is useful in helping 
students explore convergence and divergence and guess the limit of sequences. 
If desired, the precise definition of limit can be carefully explained; and students 
may even be made to memorize it, but it should not be emphasized. For example, 
students can be taught to prove why for linear functions f x  , lim f x  = f a for( )

x a 	
( ) ( )

→ 
any a, but it is more likely a ritual of manipulating ε’s and δ’s in a special situation 
than a real understanding of the concept. The time can probably be better spent 
on other proofs (e.g., mathematical induction). 

Chapter 3 
Grade-Level 

Considerations 

Grades Eight 
Through 

Twelve 

Mathematical 
Analysis 
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Chapter 3 
Grade-Level 
Considerations 

Mastery of this 
academic content 
will provide students 
with a solid 
foundation in 
probability and 
facility in processing 
statistical information. 

Probability and Statistics 

This discipline is an introduction to the study of probability, interpreta
tion of data, and fundamental statistical problem solving. Mastery of this 
academic content will provide students with a solid foundation in 

probability and facility in processing statistical information. 
Some of the topics addressed review material found in the standards for the 

earlier grades and reflect that this content should not disappear from the curricu
lum. These topics include the material with respect to the common concepts of 
mean, median, and mode and to the various display methods in common use, 
as stated in these standards: 

6.0 

8.0 

Students know the definitions of the mean, median, and mode 
of a distribution of data and can compute each in particular 
situations. 

Students organize and describe distributions of data by using 
a number of different methods, including frequency tables, 
histograms, standard line and bar graphs, stem-and-leaf 
displays, scatterplots, and box-and-whisker plots. 

In the early grades students also receive an introduction to probability at a 
basic level. The next topic will expand on this base so that students can find 
probabilities for multiple discrete events in various combinations and sequences. 
The standards in Algebra II related to permutations and combinations and 
the fundamental counting principles are also reflective of the content in these 
standards: 

1.0 Students know the definition of the notion of independent events 
and can use the rules for addition, multiplication, and comple
mentation to solve for probabilities of particular events in finite 
sample spaces. 

2.0 

3.0 

Students know the definition of conditional probability and use it 
to solve for probabilities in finite sample spaces. 

Students demonstrate an understanding of the notion of discrete 
random variables by using them to solve for the probabilities of 
outcomes, such as the probability of the occurrence of five 
heads in 14 coin tosses. 
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The most substantial new material in this discipline is found in Standard 4.0: 

4.0 Students are familiar with the standard distributions (normal, 
binomial, and exponential) and can use them to solve for events 
in problems in which the distribution belongs to those families. 

Instruction typically flows from the counting principles for discrete binomial 
variables to the rules for elaborating probabilities in binomial distributions. The 
fact that these probabilities are simply the terms in a binomial expansion provides 
a strong link to Algebra II and the binomial theorem. From this base, basic 
probability topics can be expanded into the treatment of these standard distribu
tions. In the binomial case students should now be able to define the probability 
for a range of possible outcomes for a set of events based on a single-event prob
ability and thus to develop better understanding of probability and density 
functions. 

The normal distribution, which is the limiting form of a binomial distribution, 
is typically introduced next. Students are not to be expected to integrate this 
distribution, but they can answer probability questions based on it by referring 
to tabled values. Students need to know that the mean and the standard deviation 
are parameters for this distribution. Therefore, it is important to understand 
variance, based on averaged squared deviation, as an index of variability and its 
importance in normal distributions, as stated in these standards: 

5.0 

7.0 

Students determine the mean and the standard deviation 
of a normally distributed random variable. 

Students compute the variance and the standard deviation 
of a distribution of data. 

Standard 4.0 also includes exponential distributions with applications, for 
example, in lifetime of service and radioactive decay problems. Including this 
distribution acquaints students with probability calculations for other types of 
processes. Here, students learn that the distribution is defined by a scale param
eter, and they learn simple probability computations based on this parameter. 
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Through 

Twelve 

Probability and 
Statistics 
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